

Artificial Intelligence in Action

Schedule and Syllabus

This Artificial Intelligence in Action course provides training in the skills required for a career in Al. You will master TensorFlow, Machine Learning and other Al concepts, plus the programming languages needed to design intelligent agents, deep learning algorithms, and advanced artificial neural networks that use predictive analytics to solve real-time decision making problems.

Sections will be held on Saturdays 2:30pm to 3:30pm in Creekside Auditorium, 10200 Crow Canyon Rd, Castro Valley, CA 94552. For more information and course registration, please go to https://www.amrita-hall.org/ai/

Event Type	Date	Description	Course Materials
Lecture 1	Saturday February 9	Course Introduction Al on the Edge Al in Cloud Examples of real-world applications Neural Nets	[slides]
Lecture 2	Saturday February 16	Types of Machine Learning Supervised, Unsupervised, and Semi-Supervised Learning Reinforcement and Transfer Learning Tree Search SGD	[slides] [python notes] [types of learning]
Lecture 3	Saturday March 2	Deep Neural Networks (DNNs) Backpropagation fundamentals Training and Inference Designing a DNN	[slides] [backprop notes] [neural networks]
Lection 4	Saturday March 9	TensorFlow / Python	[notebook]

Guest Lecture			[slides] [notebook]
Lecture 5	Saturday March 16	Convolutional Neural Networks (ConvNet or CNN) Foundations of ConvNets Learning visual features Training a Deep Convolutional Neural Network "DeepFakes": Machine Generation	[slides] [ConvNet notes] [notebook]
Lecture 6	Saturday March 23	Recurrent Neural Networks (RNN) Natural Language modeling Sequence-to-Sequence models Long Short-Term Memory (LSTM) models	[slides] [RNN notes]
Lecture 7	Saturday March 30	Building on Deep Neural Networks Prevent models from overfitting with dropout Vanishing Gradients Tuning Hyperparameters	[slides] [notebook]
Guest Lecture			[slides] [notebook]
Lecture 8: Project	Saturday April 6	How to build your own real-world Al application Human-Centered Al	[review notes] [notebook]
Poster Session		Amrita Hall (https://goo.gl/maps/BnLAmfLKHws)	